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The spectral evolution of sedimentary bed forms 

By SUBHASH C. JAIN AND JOHN F. KENNEDY 
Institute of Hydraulic Research, The University of Iowa, Iowa City 

(Received 1 March 1973 and in revised form 14 August 1973) 

X potential-flow based analytical model is developed for the temporal develop- 
ment of the spectra of ripples and dunes generated on an initially flattened bed 
by an open-channel flow. The analysis predicts the occurrence of two distinct 
spectral peaks at  small times; the physical origin of each is explained. One of 
the peaks has spatial frequency equal to that given by the Airy relation for 
a small amplitude stationary free-surface wave. These results are confirmed by 
Jain‘s (1971) experimental data. Jain’s data also are used to determine 
quantitativevalues of the lag distance andHayashi’s (1970) inclination factor, a, 
which appear in the sediment-transport relation used in the analysis. A variance- 
cascade model is used to derive the ‘ minus-three-power law’ that describes the 
spatial spectra of rippIes and dunes at  higher wavenumbers. Finally, the relation 
between the Froude number and dominant wavelength implied by Jain & 
Kennedy’s ( 197 1)  non-dimensionalized spectra is discussed and compared with 
data presented by Jain (1971) and Nordin (1971). 

1. Introduction 
An initially flat bed composed of non-cohesive sedimentary material and 

bounding a turbulent flow will remain flat only over limited ranges of flow 
depth and velocity; at Froude numbers less than about 0-5-0.7 the bed surface 
generally will be deformed into the migrating waves known as ripples or dunes, 
while at larger Froude numbers antidunes may be generated.? The principal 
characteristics of developing sand ripples generated by open-channel flows have 
been described by Raichlen & Kennedy (1965) and Jain & Kennedy (197 I), 
and may be summarized as follows. The first waves formed on a plane bed are 
primarily two-dimensional, with continuous crests and troughs that are much 
longer than the wavelength, and are very uniform in shape and spacing. As the 
ripples grow and mature, their wavelength increases rapidly and their two- 
dimensionality and geometrical regularity soon degenerate as the bed forms 
become short-crested and markedly three-dimensional. Fully developed ripples 
and dunes are so irregular geometrically that it is difficult to describe them 
quantitatively in other than statistical terms. This evolution of ripples from 
regular two-dimensional waves to a somewhat erratic pattern of peaks and 
pockets is illustrated in the sequential photographs obtained by Jain & Kennedy 
(1971) in the course of laboratory flume experiments on bed-form evolution. 

t A.S.C.E. Taek Force on Bed Forms in Alluvial Channels, 1966: ‘Nomenclature for 
bed forms in alluvial channels’. Proc. A.S.C.E., J .  Hyd .  Div. 92, 51-04. 
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So far two principal lines of inquiry have been pursued in attempts to describe 
and formulate the mechanisms responsible for the occurrence of sedimentary 
bed forms. In  the first type of analysis, the kinematics and dynamics of the 
liquid and solid phases and of the interaction between the flow and the bed 
during the early stages of formation have been formulated and examined to 
ascertain the conditions for occurrence and the geometrical and kinematical 
properties of the various bed forms. The theoretical models presented by Anderson 
(1953), Kennedy (1963,1969), Reynolds (1965), Gradowczyk (1968,1971), Smith 
(1970) and Engelund (1970) fall into this category. The second approach has 
involved use of statistical descriptors, principally the spectral density function, 
of sedimentary bed forms and has sought to adduce therefrom information 
concerning the mechanics of growth, migration and maintenance of the bed 
profiles. This avenue of investigation was introduced by Nordin & Algert (1966), 
and has been pursued by Ashida & Tanaka (1967), Nordin (1971), Engelund 
(1969) and Jain & Kennedy (1971). Hino (1968) presented an analysis based on 
dimensional arguments to expIain the 'minus-three-power law ' that characterizes 
the spatial spectra of ripple and dune profiles a t  higher wavenumbers. 

In  the present paper an attempt is made to combine aspects of both of the 
lines of investigation described above. A relation is derived for the evolution 
with time of the spectra of ripples and dunes, and a new derivation based on 
a variance-cascade process is presented for the minus-three-power property of 
the high frequency segment of bed-form spectra. 

2. Potential-flow model for the initial evolution of ripple and dune 
spectra 

Consider the two-dimensional, irrotational, free-surface flow of an incom- 
pressible fluid over an erodible bed. Let d be the mean depth of the flow over 
the wavy bed and U be the velocity in the positive x direction of the primary 
flow, as shown in figure 1. The origin of the vertical y co-ordinate, positive up- 
ward, is taken a t  the undisturbed free surface. Let the free-surface and bed 
profilesbegivenbyy = &z,t)andy = - d +q(x,t),respectively.Thesmplitudesof 
f and q- are assumed to be small compared with the wavelength of the bed features 
and the flow depth. The linearized boundary conditions on the upper and lower 
boundaries are 

on y = 0,  
tt + G 5 x  = #,-! 

&+ UA+Q€ = 0 J 
yt+Uy,=(p, on y=-d,  (3) 

where the subscripts x, y and t indicate partial differentiation with respect to 
space and time co-ordinates, and q5 is the harmonic velocity potential whose 
gradient is the velocity field due to just the waviness of the bed. 

The streamwise profile of the bed will be described as a stationary random 
process. Thus let ~ ( x ,  t )  be expressed in terms of its Fourier transform as 

~ ( x ,  t )  = j" B(k, t )  eikx dx, (4) 
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FIGURE 1. Definition sketch of free-surface flow over an irregular erodible bed. 

where k = 2n/L is the wave number. The harmonic potential function, expressed 
as a generalized Fourier transform, which fulfils the boundary conditions (1)-( 3), 
is 

$(x,y,t) = iUIJB(k,t)eikxclx, 

where 
cosh ky + P2kd sinh ky 

= P2kd cosh kd - sinh kd' J(k' 

in which F2 = U2/gd. In  deriving ( 5 ) ,  B, has been assumed to be small compared 
with BUk. The continuity equation for the sediment phase of the motion, 
relating the time rate of change of the local bed elevation and the streamwise 
variation of the local sediment-transport rate, is 

%+TX = 0, (7) 

in which T is the local volume rate of sediment transport per unit width. To 
close the formulation it is necessary to have an additional relation between T 
and 7 or $; this is the sediment-transport relation. The transport relation adopted 
here is a slightly modified form of the one proposed by Hayashi (1970): 

T(x,  t )  = 4 1  + arlx(x, t) l[(  - u,) + 9x( ,  -P, - d,  t)l", ( 8 )  

in which m is a dimensional coefficient, CL and n are dimensionless constants, P is 
the distance by which the local sediment-transport rate lags behind the local 
velocity at  the mean level of the bed, and U, is the critical velocity which 
just initiates particle movement. Substitution of (8) into (7 )  yields, since 

(9) 

I5UCU- Q l  e 1, 

?It(", t )  + m?I,,(% t )  + n( u - U-l $xz(x - P, - 4 t )  + O ( m  = 0,  

in which T = m( U - V,)n is the average rate of sediment transport along the 
bed at  any time. 

Taking the generalized Fourier transform of (9) and substituting for $ from 
(5) gives 

B,(k, t )  - Fk2[a - in, J, exp ( - ikp)] B(k, t )  = 0,  (10) 

in which 
cosh kd - P2kd sinh kd 
sinh lcd - F2kd cosh lcd 

J1= - J ( k ,  -d )  = 

and 
The solution of (10) is 

n, = nu/( U - &). 

B(k, t )  = B(k, 0) exp [pk2{ar. - in, J1 exp ( - ikP))t]. (11) 
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Forming the product of B(k, t )  with its complex conjugate B*(k, t )  gives 

B(k, t )  B*(k' , t )  = B(k,O) B*(k',0)exp[~k2{a-inlJlexp( -ik,8)}t]  
x exp[!7%'2{a+inlJiexp(ik/3))t], (12) 

where J ;  = -J(k ' ,  - d )  and an overbar denotes an ensemble average. Intro- 
duction of the relation 

CD(k,t)S(k-k') = B(k,t)B*(k',t),  

where CD is the spectrum of the bed elevation and 6 is the Dirac delta-function, 
into (12) and integration over all positive k' yield 

@ ( k , t )  = @ ( k ,  0)exp[2~k2(a-nlJlsink/3)t]. (13) 

The speed c of the contribution to CD with wavenumber k is found from (4) and 
(1 1) to be 

The dependence of c on k indicates that the bed waves are dispersive. 
Over those ranges of k for which a-n,Jl(kd,F2)sink,8, appearing in (13),  

is positive, CD increases with time as exp ( 2 t ) ;  accordingly, the bed is expected 
t o  be unstable with respect to disturbances having those frequencies, with the 
resultant generation of bed waves. Furthermore, one might expect that the 
dominant wavelength that occurs at small times is that for which the initial 
growth rate of the spectral density function is maximum. From (13), the initial 
normalized rate of amplification is 

c = Tnl kJl cos k$. (14) 

The variation of I' with kd for nlla = 1.0, ,8ld = 0.72 and F = 0-44 is shown in 
figure 2. Equation (15) is seen to have a singularity at the Airy speed; i.e. at 

P2 = tanh kdlkd. (16) 

It is this singularity, which occurs at the wavelength for which the speed of 
a small amplitude surface wave in a flow with depth d is just equal to the mean 
flow speed, that is responsible for the spike extending to f co in figure 2. The 
bed-flow interaction for this 'resonant' case can be analysed, at  least approxi- 
mately, as follows. The velocity potential $1 for the wave-induced velocities of 
stationary surface waves of wavelength L on a flow with depth d and mea,n 
velocity U over a plane bed is 

where A is the surface-wave amplitude. Substituting q51 from (17) for q5 in (g), 
noting that yz = 0 for the initially plane bed, and carrying out one integration 
leads to 

cosk(x-$) t ,  1 - U Ak2 
? =  nT-- [ (U-U,)  sinhhd 
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FIGURE 2. Variation of normalized growth rate I' with kcZ, calculated 
from (15) for ?],/a = 1.0, j3/d = 0-72 and F = 0.44. 

with U and lcd related by the Airy formula, (16). Equation (18) demonstrates the 
initial linear growth with time on even an absolutely flat erodible boundary of 
a bed wave with wavelength given by (16). 

3. The occurrence of spectral peaks 
Pigure 3, in which $is the spectral estimate calculated from the measured bed 

profiles, presents a typical set of spectra measured by Jain (1971). In  his ex- 
periments the bed was initially flattened over the full Soft length of the 3ft  
wide laboratory flume he used, and longitudinal bed profiles were measured, with 
a sonic probe mounted on a motorized carriage, at  short time intervals after the 
flow was started until the bed reached its equilibrium configuration. In all ex- 
periments (with the exception of one, his run 5-3, for which the bed configuration 
was in the transition state between the ripple and flat bed regimes) he found that 
the spectra measured at small times are characterized by two distinct peaks; 
e.g. those at kd values of about 4 and 8 in figure 3. This is precisely the behaviour 
predicted by (13) and (15) and illustrated in figure 2. In  fact, the values of p/d 
and nI/a adopted for figure 2 were selected to fulfil two requirements relative 
to the spectra in figure 3:  that the second peak (that at  the higher spatial fre- 
quency) of J? given by (15) and that of the spectrum measured at the smallest 
time ( t  = 3 min) occur a t  the same value of kd; and that the first frequency beyond 
the second peak at  which I? = 0 be that for which the spectrum measured a t  
small times is equal to 5 yo of its value at  the high-frequency peak. This procedure 

20 F L M  63 
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FIGURE 3. Specttra, of evolving bed profiles measured at successive times in a laboratory 
flume experiment (Jain 1971, run S-8). (a)  t (min): ----, 3 ; - - -  6 ; - - -  , 12 ;  - - -  --, 
18; - , 24. (b )  t (min): - - - --, 42; - - --, 54; - --, 78; --- , 108; - - - - - -, 156; 
-, 03. 
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FIGURE 4. Comparison of theoretical and observed (Jain & Kennedy 1971) values of kd 
at the first spectral peak. -, equation (16) ; - - - -, Lighthill'a (1953) modified wave-speed 
relation. 

was used to determine the values ofpld and nl/a for all of the experiments reported 
by Jain (197 1); the results are summarized in table 1 , together with other relevant 
data from his experiments. In  the course of the data analysis, it was found that 
for a given set of flow conditions p is dependent primarily on the value of kd at 
which the second spectral peak occurs. The estimate of n,/a, on the other hand, 
is influenced strongly by the value of 8 and corresponding kd selected as the cut- 
off value ($ = 5 % of its value at  the second peak, in the present analysis). It 
is seen in table 1 that /? is nearly constant for the limited range of conditions 
investigated in this study. The quantity n,/a also appears not to vary too widely; 
however, the estimates obtained for i t  are much less reliable than those of Pld, 
for the reason just noted. 

The first spectral peak (that a t  the lower value of Icd) appearing at small times 
in figure 3 corresponds to the singularity in (13) and (15) that arises at the Airy 
speed given by (16). Figure 4 presents a comparison of the measured values of 
kd a t  which the first spectral peaks were observed in Jain's (1971) experiments 
to occur at  small times, the Airy relation, and the wave celerity relation modified 
by Lighthill (1953) for the 3-power-law velocity distribution to take account of 
the effect of the vorticity in a turbulent open-channel flow. The correspondence 
between the observed and expected values of kd is seen to be quite satisfactory. 

The principal conclusions to be reached at this point from the foregoing analysis 
and Jain's (1971) experimental results may be summarized as follows. At small 
times the spectra of bed forms developing on an initially flat bed are characterized 
by two peaks. One peak, generally that at the lower spatial frequency, traces its 
origin to the velocity-field perturbation and accompanying pattern of differential 
deposition and scour on the bed produced by a small amplitude, stationary 
surface wave; i.e. a wave train moving relative to the fluid with velocity just 
equal in magnitude but opposite in direction to the mean flow velocity. It is 
this equality that determines the frequency of one spectral peak. The second peak 
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corresponds to bed waves resulting from the inherent instability of an interface 
bettween an erodible bed and a turbulent flow. Over wide ranges of flow conditions 
any small initial disturbance on an otherwise flat bed will produce a perturbation 
oft he velocity field and hence also of the sediment-transport distribution, giving 
rise to a spatial pattern of scour and deposition that produces bed waves. This 
inst,ability mechanism is not dependent on the proximity of a free surface; it 
also produces, for example, ripples in very deep tidal flows and aeolian ripples 
on wind-swept sand deposits. The spatial frequency at which it is centred is 
a function of the flow and transport characteristics, reflected in n&, J1 and 
Pld, and can be expected to  occur at  the value of kd where I?, given by (15) and 
illustrated in figure 2, has a continuous maximum. Equation (14) indicates that 
the two different families of waves will move with different speeds, and this 
frequency dispersion probably accounts for the shift of the normalized spectra, 
apparent in figure 3, towards the lower frequencies as the bed configurations 
develop and mature; this notion is explored in the next section. 

4. Evolution of the spectra to equilibrium 
The shift of the normalized spectra towards progressively lower frequencies 

as the bed configuration matures, noted above, is such a striking and general 
feature of the spectra reported by Jain (1971) that it  deserves elucidation. 
A possible explanation is as follows. The two mechanisms described above produce 
two initial spectral peaks, each with a different dominant wavenumber. Equa- 
tion (14) demonstrates that the waves with larger k will move faster than those 
with lower values; hence the shorter waves will overtake the longer, slower- 
moving ones. However, sedimentary waves cannot pass through each other, 
as can deformation waves in a continuous medium, and therefore the shorter 
waves will be absorbed by the longer, slower-moving ones to form new waves 
which will be longer and higher than the two waves which merged, and which 
will move still more slowly. In  this merger, bed-wave variance generated a t  
higher frequencies will be shifted to a lower frequency. This process will continue 
until the bed waves become so high that they reach a limiting steepness and 
cannot grow further, or so Iong that they are attenuated by the flow over those 
ranges of k where I? is negative [see (15) and figure 21. Thus one can envisage 
a situation in which bed waves are continuously generated at  larger wave- 
numbers, by the mechanisms described above, and overtake one another and 
merge into progressively longer and higher waves until the wavelength and 
amplitude become so great that the bed-wave variance is attenuated at lower 
wavenumbers by the flow at the same rate as that at which it is generated by the 
instability mechanisms a t  higher wavenumbers and transported into the lower 
wavenumbers. The model outlined above also provides a possible explanation 
for wind-generated ripples generally being nearly monochromatic while those 
generated by flowing water exhibit a wide range of wavelengths. In  the case of 
the aeolian bed forms, there is no free surfaoe present to interact with the bed 
and generate a second spectral peak. Hence there is not a wide range of different 
frequencies generated, which interact and produce yet other frequencies. 
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FIGURE 5. Schematic representation of differential relation for 
bed-wave variance, equation (19). 

The variance cascade described above may be formulated on the basis of 
a variance-conservation concept, as follows. The time rate of change of the 
contribution to the total variance contained between wavenumbers k and k - dk 
equals the rate of variance production between k and k - dk,  plus the difference 
between the variance flux through E and k-dk .  This continuity relation is 
depicted schematically in figure 5 and is expressed mathematically as 

- $ ( j ; @ ( K , t ) k C ( K , t ) d K  1 dk I1 , (19) 

in which h ( k , t )  is the rate of variance production a t  wavenumber k, and the 
characteristic time required for it wave with wavenumber K to merge with one 
of number kis assumed to be proportional to [ ~ c ( K ,  t)/2n]-l. At this stage it is not 
possible to solve (19) because of the many uncertainties surrounding t,he va.rious 
terms it contains. However, an important conclusion can be derived for fully 
developed bed profiles. Let it be assumed that there exists a certain range of 
wavenumbers k, < k < k, over which there is neither production nor dissipation 
of va.riance; i.e. over which A is zero. For these wavenumbers and steady-state 
conditions, (19) reduces to 
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For sufficiently large kd, J1 approaches unity and (14) becomes 

311 

c 2: Fyk (21) 

if, as concluded by Kennedy (1969), coslcp N 1 for equilibrium bed profiles. 
Introducing (21) into (20) and solving for Q, yields 

Q, N k-3. ( 2 2 )  

This power law for sediment waves has been derived by Hino (1968) on the 
basis of dimensional considerations. Kolmogorov’s ‘ -$-power law ’ for the 
inertial subrange of turbulent velocity fluctuations also has been derived (Jain 
1971) from an approach parallel to that used above. 

Figure 6 presents the spectral data reported by Jain (1971) plotted in the 
non-dimensional format proposed by Jain & Kennedy (1971). It is seen that the 
data conform nicely to ( 2 2 )  for dF8/L greater than about 10-l. For the normalizing 
parameters used in figure 6, the wavelength L,, defined as 

L, = (Jf&W, (23) 

where 

is given by L2/d - PQ. 
Kennedy’s (1969) analysis yields 

L,/d N F2 

(24) 

for the expected wavelength L, of monochromatic waves at higher frequencies. 
Figure 7, which is based on Jain?s (1971) and Nordin’s (1971) data,t indicates 
that the analytical result given by (26) would conform better with Jain’s (1971) 
experimental data on L, determined from spatial spectra if the exponent were Q, 
while Nordin’s results, on the other hand, are in satisfactory agreement with (26). 
It was found that the experimental spectral data presented non-dimensionally 
in figure 6, as well as those of Nordin (1971) and of Ashida & Tanaka (1957), 
are all grouped more tightly about a single curve if P8 instead of F2 is used in 
the normalizing factors. 

5. Concluding remarks 
The relation developed for the evolution of bed-form spectra, equation (13), 

does not predict the shift of the spectra toward lower frequencies as the bed 
configurations mature. This is because the analysis leading to (13) did not in- 
corporate any information about shorter waves overtaking and being captured 
by the longer ones. When this feature, described and formulated in $4, is in- 
corporated into the formulation developed in $ 2 ,  the analysis becomes quite 
complex. This would appear, however, to be the next logical step in the analysis 
of sand-wave spectra. 

were reported. 
t The analysis of Nordin’s data included only those experiments for which the spectra, 
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FIGURE 6. Non-dimensional plot of Jain's (1971) spectra data illustrating occurrence of 
minus-three-power law at higher frequencies. 

a e d 9 0 0 ( > ( 3 0 @  a 
U(ft/s) 1.410 1.625 1.145 1.262 1.330 1.442 1.350 1.560 1.210 1.320 1*110 
d (ft) 0.329 0.331 0.248 0.253 0.267 0.246 0.437 0.402 0-335 0.353 0.417 
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FIGURE 7. Relation between P and normalized wavelength for Jain’s (1971) 
and Nordin’s (1971) data. 0,  Jain’s data; 0, Nordin’s data. 

The sediment-transport parameters a and /3 were introduced in (8) and 
evaluated from the spectra measured by Jain (1971). One could, no doubt, adopt 
other forms of transport relations and obtain analytical results that also are 
in satisfactory agreement with experimental data. The free parameters which 
the alternative formulations would contain could very likely also be evaluated 
from the spectra of developing bed forms. The point is that the understanding 
and formulation of the local sediment-transport rate in non-uniform flow at  
present are so imperfect that one is compelled to incorporate into analytical 
models of the mechanics of sedimentary bed forms rather primitive relations for 
the local sediment discharge. These relations will almost invariably contain one 
or more undetermined coefficients. The method proposed here for evaluating 
nI /a  and /3 provides a technique for determination of those coefficients. One 
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should keep in mind, however, that their values are likely to change as the bed 
forms develop and may be quite different for equilibrium conditions. Perhaps 
they can best be determined then from data on the dominant wavelength and 
wave speed of fully developed bed forms. 

Jain's experiments and the analysis presented in $ 3 2  and 4 were carried 
out in a research programme sponsored by the Iowa State Water Resources 
Research Institute under Grant A-029 IA. The technique for evaluation of a and 
/3 was developed in the course of a research programme on ice ripples sponsored 
by the National Science Foundation under Grant GK35918X. 
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